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Abstract. We study the two-photon propagation (TPP) modelling equations. The one-phase
periodic solutions are obtained in an effective form. Their modulation is investigated by means
of the Whitham method. The theory developed is applied to the problem of creation of TPP
solitons on the sharp front of a long pulse.

1. Introduction

Experimental investigation of two-photon propagation (TPP) solitons is rather difficult
because such a soliton propagates on the background of a longer pulse and disappears
at one of its ends. More intensive pulses lead to the creation of a nonlinear periodic wave
as was shown for stimulated Raman scattering [1]. This poses the problem of describing
soliton creation on the front of the pulse. The creation of solitons is caused in this case
by the modulation instability which transforms the wavefront into a non-uniform region of
nonlinear oscillations.

In this work, we study the TPP modelling equations†. As has already been used for
other analogous problems [2–6], the Whitham method is used. To give the full description
of the non-uniform region, we have to find the periodic solution in an effective form. The
solution of this problem can be obtained by means of modification of the well known
finite-band integration method [7] (when the operators of the Lax pair are not self-adjoint).
Such a modification was suggested in [8] and has been applied to a number of physically
significant integrable equations [2–6, 9–11].

2. Periodic solutions of TPP equations

2.1. Derivation of the periodic solutions

The TPP equations describe the propagation of two waves with frequenciesω1 andω2 and
envelope electric fieldsE1 andE2 in a medium with resonance transition at the frequency
ω1 + ω2. The equations acquire symmetric form if we introduce the vectorS with the
components [13]

S1 = E∗
1E

∗
2 + E2E1 S2 = i(E∗

1E
∗
2 − E2E1) S3 = E1E

∗
1 + E2E

∗
2 (1)

† An analogous problem on stimulated Raman scattering will be discussed in a separate publication because of
the large number of differences in formulae and final results.
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4128 A M Kamchatnov and F Ginovart

and pass from the retarded timet ′ = t − x/c (x is a space coordinate along which the wave
propagates andc is their group velocity) to the variable

τ = k

∫ t

t0

I (t ′) dt ′ (2)

whereI (t) = E1E
∗
1 − E2E

∗
2 is the difference of the two field intensities,k is the coupling

constant of the dipole interaction of the fields with the medium. If we also introduce the
dimensionless space coordinateξ and the Bloch vectorR describing the state of the medium
(R± = R1 ± iR2 correspond to non-diagonal elements of the density matrix andR3 to the
difference of populations of the upper and the lower levels of the molecules), then the TPP
equations take the form [13, 14]

∂R+
∂τ

= i(1R+S3 + R3S+)
∂R3

∂τ
= i

2
(R+S− − R−S+)

∂S+
∂ξ

= i(1S+R3 − S3R+)
∂S3

∂ξ
= i

2
(S+R− − S−R+)

(3)

whereS± = S1 ± iS2 and1 is the relative dynamic Stark shift coefficient. The vectorsR
andS are normalized according to the conditions

R2
1 + R2

2 + R2
3 = 1 −S2

1 − S2
2 + S2

3 = 1. (4)

In [13, 14] it was shown that the system (3) is integrable by the inverse scattering
transform method which permits one to obtain its soliton as well as multi-soliton [15]
solutions. The inverse scattering transform method is based on the possibility of presenting
equations (3) as a compatibility condition of two linear systems

∂ψ

∂τ
=

(
F G

H −F
)
ψ

∂ψ

∂ξ
=

(
A B

C −A
)
ψ (5)

whereψ = (ψ1, ψ2)
T is a two-component ‘spinor’ of solutions of equations (5). The general

AKNS scheme [16] leads to the equations (3) if one takes the following coefficients [13, 14]

F = −iλS3 G = (λ+ σ)S+ H = (λ− σ)S− (6)

A = i

2

(
1+ 1

2λ+1

)
R3 B = − λ+ σ

2λ+1
R+ C = − λ− σ

2λ+1
R− (7)

where the parameterσ is connected with1 according to

σ 2 = 1
4(1 +12) (8)

andλ is an arbitrary spectral parameter.
The systems (5) have two basic solutions,(ψ1, ψ2) and(ϕ1, ϕ2), which can be used to

build a vector with the spherical components

f = − 1
2i(ψ1ϕ2 + ψ2ϕ1) g = ψ1ϕ1 h = −ψ2ϕ2 (9)

satisfying the following linear systems:

∂f/∂τ = −iHg + iGh ∂f/∂ξ = −iCg + iBh

∂g/∂τ = 2iGf + 2Fg ∂g/∂ξ = 2iBf + 2Ag

∂h/∂τ = −2iHf − 2Fh ∂h/∂ξ = −2iCf − 2Ah.

(10)

The length of the vector with components (9),

f 2 − gh = P(λ) (11)
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does not depend onτ and ξ . The periodic solution is distinguished by the condition that
P(λ) be a polynomial inλ [17–19]. The single-phase solution corresponds, as we shall see,
to the fourth-degree polynomial

P(λ) =
4∏
i=1

(λ− λi) = λ4 − s1λ
3 + s2λ

2 − s3λ+ s4. (12)

It is easy to find that the systems (10) with the coefficients (6), (7) are satisfied if we take

f = S3λ
2 − f1λ+ f2 g = (λ+ σ)S+(λ− µ) h = (λ− σ)S−(λ− µ∗) (13)

providedf1, f2, µ, µ
∗ satisfy the conditions

2f1S3 + (1 − S2
3)(µ+ µ∗) = s1

2f1f2 − (1 − S2
3)σ

2(µ+ µ∗) = s3

f 2
1 + 2f2S3 + (1 − S2

3)(−σ 2 + µµ∗) = s2

f 2
2 − (1 − S2

3)σ
2µµ∗ = s4

(14)

and the following equations are also fulfilled:

∂S3

∂τ
= i(1 − S2

3)(µ− µ∗)
∂S+
∂τ

= −2i(f1 − µS3)S+ (15)

R+S−
(
µ∗ + 1

21
) = R−S+

(
µ+ 1

21
)

f
(− 1

21
)
R+ + 1

2

(
µ+ 1

21
)
R3S+ = 0. (16)

If we substitute (13) into (10) and putλ = µ, then we obtain the evolution equations forµ:

∂µ

∂τ
= −2if (µ) = −2i

√
P(µ)

∂µ

∂ξ
= − R+

(2µ+1)S+

∂µ

∂τ
. (17)

Let us write the relations (16) in the form

R+
(µ+ 1

21)S+
= R−
(µ∗ + 1

21)S−
= − R3

2f (− 1
21)

= 2

V
(18)

where, as we shall see,V is the nonlinear phase velocity of the wave. From equation (18)
we find

1 − R2
3

(1 − S2
3)(µ+ 1

21)(µ
∗ + 1

21)
= R2

3

4f 2(− 1
21)

= 4

V 2
.

If we put λ = − 1
21 in (11), then we have

(S2
3 − 1)

(
µ+ 1

21
) (
µ∗ + 1

21
) = 4

[
P

(− 1
21

) − f 2
(− 1

21
)]

and, hence, the preceding equation gives

V = 4
√
P

(− 1
21

)
. (19)

Thus,µ depends only on the phase

W = τ − ξ

V

dµ

dW
= −2i

√
P(µ). (20)

The last equation of the system (3) can also be transformed with the help of (15), (16) into
the form

∂S3

∂ξ
= − 1

V

∂S3

∂τ

thusS3 also depends only on the phaseW .
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With this change ofW, the variableµmoves along some curve which defines the contour
of integration when one calculatesµ(W) according to (20). Therefore it is convenient to
determine this contour explicitly forµ by means of introducing some coordinate parameter
along it (see [8]). From equation (14) it seems natural to takeS3 as such a parameter, so that
µ is to be expressed as a function ofS3. Then the identity (11) is satisfied automatically.
The system (14) actually coincides with the analogous system in [10], so let us use its
solution. Forf1 andf2 we have

f 2
1 = 1

2σ 2

[
σ 4 + s2σ

2 + s4 −
√
P2(σ 2)

]
(21)

where

P2(σ
2) =

4∏
i=1

(λ2
i − σ 2)

f2 = s3 + s1σ
2

2f1
− σ 2S3.

(22)

The sign off1 is determined by the stability condition of the solutionS3 = −R3 = 1 (see
[13]). As we shall see, the choice of positive sign, i.e.f1 = +√

f 2
1 , leads to the stable

solution.
Equations forS+ in (3) and (15), (16), (22) yield

∂S+
∂ξ

= −2i

V

[
4f1σ

2 + (s3 + s1σ
2)1

f1

]
S+ − 1

V

∂S+
∂τ

that is

S+ = exp

{
−2i

V

[
4f1σ

2 + (s3 + s1σ
2)1

f1

]
ξ

}
S̃+ (23)

whereS̃+ depends only on the phaseW and is determined by the equation

dS̃+
dW

= −2i(f1 − µS3)S̃+. (24)

The parameterµ is expressed in terms ofS3 as follows (see [10]):

µ = s1 − 2f1S3 + 2i
√

−σ 2R(S3)

2(1 − S2
3)

(25)

where

R(ν) = ν4 − s3 + s1σ
2

f1σ 2
ν2 + s2

σ 2
ν2 −

(
s1f1

σ 2
− s3 + s1σ

2

f1σ 2

)
ν − 4s2 − 4f 2

1 − s2
1 + 4σ 2

4σ 2
(26)

is the algebraic resolvent of the polynomialP(λ) whose zerosνi , i = 1, 2, 3, 4, are related
to the zerosλi , i = 1, 2, 3, 4, of P(λ) by the formulae obtained in [10]:

ν1 = − 1

4f1σ 2
[(λ1 − λ3)(λ

′
2 − λ′

4)+ (λ2 − λ4)(λ
′
1 − λ′

3)]
−1

×{(λ1 − λ3)[−2(λ1 + λ3)(λ
′
2 − λ′

4)σ
2

+(λ2λ
′
4 − λ4λ

′
2)((λ1 + λ3)

2 − (λ′
1 − λ′

3)
2)]

+(λ2 − λ4)[−2(λ2 + λ4)(λ
′
1 − λ′

3)σ
2

+(λ1λ
′
3 − λ3λ

′
1)((λ2 + λ4)

2 − (λ′
2 − λ′

4)
2)]} (27)
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where

λ′
i =

√
λ2
i − σ 2

and ν2 and ν3 are obtained fromν1 by means of exchange of indices 3↔ 4 and 3↔ 2,
respectively, andν4 can be obtained from the formula

ν4 = s1σ
2 + s3

f1σ 2
− (ν1 + ν2 + ν3). (28)

From the first equation (15) and (25) we find the evolution equation forS3:

dS3

d(2W)
=

√
−σ 2R(S3). (29)

The variableS3 is real and because of (4) can oscillate only between two resolvent’s zeros
greater than unity. Theνi are real if the zerosλi of P(λ) consist of two complex conjugate
pairs

λ1 = α + iγ λ2 = β + iδ λ3 = α − iγ λ4 = β − iδ. (30)

In figure 1 the plots ofνi , i = 1, 2, 3 (ν4 is located much aboveν1), as functions ofσ 2 are
shown in the case ofλ1 = 1 + i, λ2 = 2 + 2i. As we see, the resolvent’s zeros are ordered
according to−1< ν3 < ν2 < 1< ν1 < ν4 andS3 oscillates in the interval

1< ν1 6 S3 6 ν4 (31)

whereR(S3) 6 0.

Figure 1. Dependence of the resolvent’s zerosνi , i = 1, 2, 3, on the parameterσ 2

(λ1 = λ∗
3 = 1 + i, λ2 = λ∗

4 = 2 + 2i). For other values ofλi the curves are deformed
but their ordering remains the same.

Equations (20) and (29) permit us to calculate the periodT in two ways

T = 1

2

∮
dµ√−P(µ) =

∫ ν4

ν1

dν√
−σ 2R(ν)

which leads to useful relations

m = (ν2 − ν3)(ν4 − ν1)

(ν1 − ν3)(ν4 − ν2)
= (λ1 − λ3)(λ2 − λ4)

(λ1 − λ4)(λ2 − λ3)
(32)

σ 2(ν1 − ν3)(ν4 − ν2) = (λ1 − λ4)(λ3 − λ2) = (α − β)2 + (γ + δ)2

σ 2(ν4 − ν1)(ν2 − ν3) = (λ1 − λ3)(λ4 − λ2) = 4γ δ.
(33)
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Periodic solution of (29) gives us the desired equation forS3

S3 = (ν1 − ν3)ν4 + (ν4 − ν1)ν3 sin2(
√
σ 2(ν1 − ν3)(ν4 − ν2)W,m)

ν1 − ν3 + (ν4 − ν1) sin2(
√
σ 2(ν1 − ν3)(ν4 − ν2)W,m)

(34)

where the initial phase is equal to zero.
Let us now calculateS+. Inserting (25) and (29) into (24) yields

S̃+ =
√

1 − S2
3 exp

[
i
∫ W

0

s1S3 − 2f1

1 − S2
3

dW

]
. (35)

It is convenient to use the Weierstrass functions

sin2
(√
σ 2(ν1 − ν3)(ν4 − ν2)W,m

)
= e1 − e3

℘(W)− e3

where

e1 = −s2/3 + σ 2(ν1ν4 + ν2ν3)

e2 = −s2/3 + σ 2(ν1ν3 + ν2ν4)

e3 = −s2/3 + σ 2(ν1ν2 + ν3ν4)

(36)

the expression under the integral sign in (35) can be written as follows:

s1S3 − 2f1

1 − S2
3

= s1 − 2f1

2(1 − ν4)

℘ (W)− ℘(ρ)

℘ (W)− ℘(κ)
− s1 + 2f1

2(1 + ν4)

℘ (W)− ℘(ρ)

℘ (W)− ℘(κ̃)

whereρ, κ, κ̃ are determined by

℘(ρ) = e3 − σ 2(ν4 − ν2)(ν4 − ν1)

℘ (κ) = e3 − σ 2(ν4 − ν2)(ν4 − ν1)(1 − ν3)

1 − ν4

℘(κ̃) = e3 − σ 2(ν4 − ν1)(ν4 − ν2)(1 + ν3)

1 + ν4
.

(37)

Integration can be performed by means of the formula∫ W

0

℘(W)− ℘(ρ)

℘ (W)− ℘(κ)
dW = W + ℘(ρ)− ℘(κ)

℘ ′(κ)

[
ln
σ(κ +W)

σ(κ −W)
− 2ζ(κ)W

]
whereζ andσ are the Weierstrass functions. As a final result we have

S+ = −
√
ν2

4 − 1 exp

{
− 2i

V

[
4f1σ

2 + (s3 + s1σ
2)1

f1

]
ξ + i(s1ν4 − 2f1)

1 − ν2
4

W

− (ζ(κ)+ ζ(κ̃))W

}
σ(W + κ)σ (W + κ̃)σ 2(ρ)

σ (κ)σ (κ̃)σ (W + ρ)σ(W − ρ)

W = τ − ξ

V
V = 4

√
P

(− 1
21

) = 4

√[(
α + 1

21
)2 + γ 2

] [(
β + 1

21
)2 + δ2

]
.

(38)

The formulae (34) and (38) give the general solution forS. The components of vectorR
can be found with the help of (18); in particular, we have

R3 = − 4

V
f

(− 1
21

) = − 1

V

(
−S3 + 2f11+ 2

f1
(s3 + s1σ

2)

)
. (39)
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2.2. The soliton limit case

Let us consider the soliton limit of this solution, i.e. when we have

λ1 = λ2 = α + iγ λ3 = λ4 = α − iγ.

Thens1 = 4α, s3 = 4α(α2 + γ 2), f1 = 2α and (39) gives

1 + R3 = 1

V
(S3 − 1) (40)

where the soliton velocity equals

V = 4
[(
α + 1

21
)2 + γ 2

]
. (41)

The general formulae (27), (28) for the resolvent’s zeros reduce to

ν1 = ν2 = 1 ν3 = λλ′ + λ∗λ′∗

λ′λ∗ + λλ′∗ ν4 = 1

σ 2
(λλ∗ + λ′λ′∗). (42)

Taking into account (see equation (35))

(ν4 − 1)(1 − ν3) = 4γ 2

σ 2∑
νi = 2 + ν3 + ν4 = s3 + s1σ

2

f1σ 2
= 2

α2 + γ 2

σ 2
+ 2

we find that(1+ ν3) and(ν4 − 1) are the roots of a simple quadratic equation which gives

ν3 = 1

σ 2

(
α2 + γ 2 −

√
(α2 + γ 2 + σ 2)2 − 4γ 2σ 2

)
ν4 = 1

σ 2

(
α2 + γ 2 +

√
(α2 + γ 2 + σ 2)2 − 4γ 2σ 2

) (43)

which agree with (42).
Equation (34) takes the form

S3 = (ν4 − ν3) cosh2(2γW)− ν3(ν4 − 1)

(ν4 − ν3) cosh2(2γW)− (ν4 − 1)

which gives

S3 − 1 = 2
(ν4 − 1)(1 − ν3)/(ν4 − ν3)

cosh(4γW)− (ν3 + ν4 − 2)/(ν4 − ν3)
. (44)

Let us introduce the parameterϑ according to

tan 2ϑ = 2σγ

σ 2 − α2 − γ 2
(45)

so that

S3 − 1 = V (1 + R3) = 2γ

σ

sin 2ϑ

cosh(4γW)+ cos 2ϑ
. (46)

Expressions (45) and (46) coincide with the Steudel soliton solution [13].
As one more particular case let us consider the wave withδ = 0. The behaviour of

the solution depends now on the value of the parameterσ 2. In order to show it, first take
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α = 0, so thatλ1 = λ∗
3 = iγ, λ2 = λ4 = β. Then the resolvent zeros are equal to

(a) ν1 = ν4 =
√
σ 2 + γ 2

σ
ν2 = −ν3 =

√
σ 2 − β2

σ
σ 2 > γ 2

(b) ν1 = β
√
γ 2 + σ 2 − γ

√
σ 2 − β2

σ 2
ν2 = ν3 = 0

ν4 = β
√
γ 2 + σ 2 + γ

√
σ 2 − β2

σ 2
0< σ 2 < β2.

(47)

As we see, atσ 2 > β2 the zerosν1 andν4, coincide with each other which leads to a wave
with constant amplitude. The corresponding solution has the form

S3 = 1

σ

√
σ 2 + γ 2 S+ = γ

σ
exp

−i
2σ

√
σ 2 + γ 2√

1
41

2 + γ 2
ξ


R3 = − 1

√
σ 2 + γ 2

2σ
√

1
41

2 + γ 2
R+ = γ

2σ
√

1
41

2 + γ 2
exp

−i
2σ

√
σ 2 + γ 2√

1
41

2 + γ 2
ξ

 .

(48)

However, at 0< σ 2 < β2 the other two zerosν2 and ν3 coincide, and we have a special
form of the periodic solution:

S3 = 2β2γ 2 + σ 2(β2 − γ 2)

σ 2[β
√
σ 2 + γ 2 − γ

√
σ 2 − β2 cos(2

√
β2 + γ 2W)]

σ 2 < β2.

The same behaviour takes place atα 6= 0, as we can see from figure 2, where the dependence
of the resolvent’s zeros onσ 2 is shown in the case of the parameter valuesα = γ = 1,
β = 2, δ = 0. These curves can be considered as deformations of the curves in figure 1,
when we pass fromδ = 2 to δ = 0. Again the zerosν1, ν4 coincide atσ 2 > 4 (β2 = 4),
but at 0< σ 2 < 4 we haveν2 = ν3. In the former region of values ofσ 2, the periodic
solution goes to a wave with constant amplitude, and in the latter region it goes to a special
periodic wave withm = 0. It is important that in both cases the wave is expressed in terms
of the complex spectrumλi , which leads to its modulation instability.

Figure 2. Dependence of the resolvent’s zerosνi , i = 1, 2, 3, 4, on σ 2 for λ1 = λ∗
3 = 1 + i,

λ2 = λ4 = 2. The curves are the result of deformation of those in figure 1 when we go from
δ = 2 to δ = 0.
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3. Creation of solitons on the pulse front

The modulation of the periodic wave found above is described by the Whitham theory [20],
which leads in our case to the diagonal form of the Whitham equations for the Riemann
invariantsλi , i = 1, 2, 3, 4. They are complex which means that the wave will have a
modulation instability. It can be shown directly for the particular case (48). Indeed, the
dispersion relation for small modulations of (48) has the form

K(�) = �(
√
�2 − 4γ 2 −1)√

12 + 4γ 2[�2 − (12 + 4γ 2)]
(49)

whereK and� are the wavenumber and the frequency of a small modulation, respectively.
We see that the solution (48) is unstable with respect to modulation with frequencies� < 2γ.
This modulation instability leads to the growth of any disturbance with harmonics� < 2γ.
In particular, the sharp front transforms into a non-uniform expanding region, one edge of
which corresponds to solitons and the other one to a wave of small modulation propagating
along the pulse with some group velocity. The whole region can be described as a modulated
nonlinear periodic wave in which the parametersλi , i = 1, 2, 3, 4, are slow functions ofξ
and τ . Averaging over fast oscillations gives the Whitham equations forλi, which prove
to be their Riemann invariants. The derivation of these equations is similar to that of
[2, 6, 11, 21]. Therefore here we shall write the final result. The Whitham equations forλi
have the diagonal form

∂λi

∂ξ
+ 1

vi

∂λi

∂τ
= 0 i = 1, 2, 3, 4 (50)

where the group velocities are equal to

1

vi
=

(
1 − T

∂iT
∂i

)
1

V
∂i ≡ ∂

∂λi
i = 1, 2, 3, 4 (51)

with periodT being given by

T = 1

2

∮
dµ√−P(µ) = 2K(m)√

(λ1 − λ4t)(λ3 − λ2)
(52)

where K(m) is the complete elliptic integral of the first kind andV is defined in (38). (Note
that these equations can be obtained from the analogous equations for the self-induced
transparency case [11] by means of replacement1 → − 1

21; see also [22].)
Let us consider the problem of evolution of the initially step-like pulse:

S3 = ν4 at ξ > 0 S3 = 1 at ξ < 0 (53)

whereν4 corresponds to the valuesλ1 = λ∗
3 = α+ iγ , λ2 = λ4 = β, i.e. to the limit of zero

modulation(δ = 0) which takes place forσ 2 > β2. Thus, we suggest thatβ2 is less than
σ 2, which corresponds to a strong Stark effect. It is important that the solution with constant
amplitude withσ 2 > β2 does not depend onβ, until β satisfies the above inequality, so
that the matching condition forβ at the edge withδ = 0 is fulfilled automatically. In the
problem under consideration there is no characteristic dimension, hence the parametersλi
depend only on the self-similar variableζ = ξ/τ . Sinceλ3 = λ∗

1 andλ4 = λ∗
2, it is sufficient

to use only two Whitham equations (50), which in our self-similar case take the form

dλ1

dζ
(v1 − ζ ) = 0

dλ2

dζ
(v2 − ζ ) = 0. (54)

As we shall see, the solution corresponding to our initial data (53) isλ1 = constant,
v2 = ζ = ξ/τ or
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α + iγ = constant (55)
1

4
√
((α + 1

21)
2 + γ 2)((β + 1

21)
2 + δ2)

{
1 − 1

β − δ + iδ

× 2iδ[α − β + i(γ − δ)]K(m)

[α − β + i(γ − δ)]K(m)− [α − β + i(γ + δ)]E(m)

}
= τ

ξ
(56)

where E(m) is the complete elliptic integral of the second kind. On separating real and
imaginary parts in the above equation, we obtain

E(m)

K(m)
= β(α2 + β2 + γ 2 + δ2)− 2β(αβ + γ δ)+ 1

21[(α − β)2 + (γ − δ)2]

β(α2 + β2 + γ 2 + δ2)− 2α(β2 + δ2)+ 1
21[(α − β)2 + γ 2 − δ2]

(57)

− 1

4
√
((α + 1

21)
2 + γ 2)((β + 1

21)
2 + δ2)

×α(β
2 + δ2)− β(α2 + γ 2)− 1

21(α
2 − β2 + γ 2 − δ2)− 1

41
2(α − β)

(α − β)[(β + 1
21)

2 + δ2]
= τ

ξ

(58)

which, together withα = constant,γ = constant and (32), determine implicitly the
dependence ofβ andδ on ζ = ξ/τ .

It is convenient to expressβ andδ as functions ofm (see [3, 5, 6]):

β = − 1
21+ α + 1

21

(α + 1
21)

2 + γ 2m2A2(m)

(
(α + 1

21)
2 + (2 −m)γ 2A(m)

+γ
√

4(α + 1
21)

2A(m)+ 4γ 2A2(m)(1 −m)− (α − 1
21)

2(1 +mA(m))2
)
(59)

δ = γ

α + 1
21
mA(m)

(
β + 1

21
)

(60)

where we have introduced the function

A(m) = (2 −m)E(m)− 2(1 −m)K(m)

m2E(m)
. (61)

In figure 3 the curves are shown along which the Riemann invariantsλ2 andλ4 move with
change ofm (α = 1, γ = 1, 1 = 4). The pair of complex Riemann invariants arises at
λ2 = λ4 = β = 2.0 (wherem = 0, δ = 0) on the real axis and after that they move in
the complex plane until they coalesce with the constant pairλ1 = 1 + i and λ3 = 1 − i at
m = 1. Substitution of the above expressions forβ andδ into (58) gives us the dependence
of m on ζ = ξ/τ . An example of such a plot is shown in figure 4. Let us investigate this
region of fast oscillations at both its edges.

If m → 1 we have

β + 1
21 ' (

α + 1
21

) 1 + 2γ
√

1 −m√
(α + 1

21)
2 + γ 2

 δ ' γ

1 + 2γ
√

1 −m√
(α + 1

21)
2 + γ 2


and according to (58) this edge moves with the soliton velocity

vs = ξ

τ

∣∣∣∣
m→1

= 4((α + 1
21)

2 + γ 2). (62)
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Figure 3. The paths ofλ2 and λ4 on the complex planeλ corresponding to the self-similar
solution under consideration.

Figure 4. Dependence of the parameterm of elliptic functions onζ = ξ/τ for α = γ = 1,
1 = 4. The minimal velocity atm → 1 corresponds to the soliton velocity (62) (vs = 40.03
for the chosen values of parameters), and the maximal velocity atm → 0 corresponds to the
group velocityvg = d�/dK of small modulations (vg = 101.2 in our case).

Figure 5. Dependence of the resolvent’s zerosν1, ν2, ν3, ν4 on m. The boundary with plane
wave corresponds toν1 = ν4, and the soliton boundary corresponds toν1 = ν2.

If m → 0, thenβ andδ go to the values

β = − 1
21+ (

α + 1
21

) 1 + 3γ 2

4(α + 1
21)

2

1 +
√

1 + 8(α + 1
21)

2

9γ 2


δ = 0

(63)
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Figure 6. Dependence ofS3 on the space coordinateξ at two moments of time: (a) τ = 8, (b)
τ = 16. The calculation was done with the use of (34), whereα = 1, γ = 1, β andδ depend
onm according to (59) and (60), andζ depends onm according to (58).

and (58) becomes

1

v
= τ

ξ
= α2 + γ 2 − αβ + 1

21(α − β)

4(β + 1
21)

2(α − β)

√
(α + 1

21)
2 + γ 2

. (64)

In this limit of small modulation the Whitham theory must reproduce the linear
approximation, that isv must coincide with the corresponding group velocity of the
modulation wave. From the general periodic solution (34) and (38) we know that the
phase of the modulation wave atδ = 0 has the form√

(α − β)2 + γ 2

τ − ξ

4(β + 1
21)

√
(α + 1

21)
2 + γ 2


that is the frequency� and the wavenumberK of the modulation wave are expressed in
terms of the parametersα, β, γ as follows:

� = 2
√
(α − β)2 + γ 2 K = �

4(β + 1
21)

√
(α + 1

21)
2 + γ 2

. (65)

It is easy to check that these values satisfy the generalization of the dispersion relation (49)
on α 6= 0:

K(�) = �(
√
�2 − 4γ 2 − 2(α + 1

21))

2
√
(α + 1

21)
2 + γ 2[�2 − 4((α + 1

21)
2 + γ 2)]

. (66)
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Calculation of group velocityvg = (dK/d�)−1 at� from (65) reproduces, as we expected,
the solution (63) of the Whitham equations in the limit of small modulation. It can be
shown thatvg > vs at all α and γ . The dependence ofν1, ν2, ν3, ν4 on m is shown in
figure 5. Atm = 0 (plane-wave boundary) we haveν1 = ν4, and atm = 1 (soliton limit)
we haveν1 = ν2. This plot looks like the behaviour of real Riemann invariants in the
Gurevich–Pitaevskii-type problems [7, 23–25].

We see that the sharp front transforms into the expanding oscillatory region. The slower
edge of this region propagates with the soliton velocity and consists of the train of solitons.
The faster edge propagates with the group velocity of the small modulation wave. The
whole region can be described as a modulated nonlinear periodic solution of TPP equations.
This oscillatory region is shown in figure 6 for two values ofτ . The plots demonstrate the
process of soliton creation on the front of the pulse.

Thus, the method discussed here gives us an efficient approach to the nonlinear theory
of modulation instability and can be applied to a variety of different problems.
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